当前位置:首页>购物网站>正文
卡门涡街效应(什么是卡门涡街现象)
今天给各位分享卡门涡街效应的卡门知识,其中也会对什么是涡街卡门涡街现象进行解释,如果能碰巧解决你现在面临的效应象问题,别忘了关注本站,门涡现在开始吧!街现
大桥为什么会出现异常抖动的情况,背后有什么科学解释?效应象
随着现代悬索桥的出现,人类得以建造出越来越长的门涡桥梁。悬索桥的街现跨度可以很长,能够跨过峡谷、卡门大江、涡街海峡,效应象例如,门涡横跨300多米深峡谷的街现中国矮寨特大悬索桥;杨泗港长江大桥的主跨长度可达1.7公里,这在世界悬索桥中位列第二,而在世界双层悬索桥中位列第一。
由于悬索桥的跨度长,这会带来一些空气动力学问题。当大风横向吹过悬索桥,桥面有可能会出现波浪式的晃动,这会让行经桥上的人感到非常不适。如果严重的话,桥梁还有可能被摇晃垮塌。
那么,为什么悬索桥会出现异常的抖动现象呢?
从物理学原理来讲,任何物理结构都存在一个固有频率。如果强迫振动的频率接近于物理结构的固有频率,就会引发共振现象。如果振幅足够高,结果会导致结构被破坏掉。
在19世纪,法国的一队士兵迈着相当整齐划一的步伐走过一座长100米的桥梁时,由于齐步走产生的频率与大桥的固有频率相吻合,导致大桥不断摇晃,然后出现共振现象。当士兵走到桥中间时,剧烈的共振现象引发桥梁坍塌,数百人落入水中丧命。
除了整齐的步伐之外,大风吹过桥梁也会造成大桥抖动,并有可能引发剧烈的共振现象,这涉及到卡门涡街效应。
当强风横向吹过桥面时,会在桥面上下两侧产生两道旋涡,它们的旋转方向相反,互相交错。由此会对桥面产生周期性强迫力,导致桥面出现晃动。这就是卡门涡街效应,由现代宇航科技之父冯·卡门最早阐明原理。
如果卡门涡街效应十分强烈,使得桥面振动幅度增大,最终达到桥梁的固有频率。结果就会出现共振现象,桥梁将会发生剧烈的振动,从而导致桥梁垮塌,这在现实中有发生过。
1940年,横跨塔科马海峡的塔科马海峡悬索桥建成通车。然而,仅过了几周,桥面就开始出现异常的抖动。经过几个月的摇摆之后,塔科马海峡大桥的桥面最终扭曲断掉,大桥发生垮塌。
根据塔科马海峡大桥模型的风洞测试,大桥崩塌的原因正是卡门涡街效应引发的剧烈共振现象。塔科马海峡大桥的桥面不够厚,使其无法承受强风造成的卡门涡街效应,最终风速为65公里/小时的大风吹垮了大桥。
此后,人们意识到,桥梁建造之前先要对模型进行严格的风洞测试。而且桥梁上还要设计一些气孔,破坏卡门涡街效应。10年之后,经过严格仿真测试的新塔科马海峡大桥又建起来,如今它还在正常通行。
现代桥梁的设计都会考虑到卡门涡街效应,以后基本上不可能会出现塔科马海峡吊桥那样的崩塌现象。
不过,在设计允许的范围内,桥面有时会出现一些上下起伏的波动,这种晃动是正常的涡激振动现象。其原因可能是由桥面的截面发生变化所致,例如,放置水马围挡。只要振动幅度不大,没有超过设计范围,大桥是不会有问题的。
流体力学中比较有意思的现象有哪些
很多哦!比如:
1.卡门涡街是流体力学中重要的现象,在自然界中常可遇到,在一定条件下的定常来流绕过某些物体时,物体两侧会周期性地脱落出旋转方向相反、排列规则的双列线涡,经过非线性作用后,形成卡门涡街。如水流过桥墩,风吹过高塔、烟囱、电线等都会形成卡门涡街。
2.船吸现象,当两船并行时,因两船间水的流速加快,压力降低,外舷的流速慢,水压力相对较高,左右舷形成压力差,推动船舶互相靠拢。另外,航行船舶的首尾高压区及船中部的低压区,也会引起并行船舶的靠拢和偏转,这些现象统称为船吸。1912年秋天,“奥林匹克”号正在大海上航行,在距离这艘当时世界上最大远洋轮的100米处,有一艘比它小得多的铁甲巡洋舰“豪克”号正在向前疾驶,两艘船似乎在比赛,彼此靠得较拢,平行着驶向前方。忽然,正在疾驶中的“豪克”号好像被大船吸引似地,一点也不服从舵手的操纵,竟一头向“奥林匹克”号闯去。最后,“豪克”号的船头撞在“奥林匹克”号的船舷上,撞出个大洞,酿成一件重大海难事故。
3.高尔夫球的形状。 高尔夫球表面有意制造了许多的凹痕,这与球体绕流(即绕球体的流动)的湍流转捩及分离流现象有关。光滑球体绕流时,湍流转捩发生的晚,与湍流对应的规则流动称为层流。而层流边界层较易发生流动分离现象(即流线离开球的表面),造成球体背后较大的死水区,产生很大的阻力(形阻)。使高尔夫球飞行的距离很小。而球体表面有凹痕时,凹痕促使湍流转捩发生,湍流边界层不易发生流动分离现象,从而使球体背后的死水区小,减少了阻力。使高尔夫球飞行的距离增大。湍流的摩阻比层流要大,但与形阻相比,起得作用很小,总的阻力还是变小了。高尔夫球表面的小突起,也能起到促使分离的作用,但突起对流动的干扰有些难以控制,造成一些侧向力(也可以叫升力)。
4.虹吸是一种流体力学现象,可以不借助泵而抽吸液体。处于较高位置的液体充满一根倒U形的管状结构(称为虹吸管)之后,开口于更低的位置。这种结构下,管子两端的液体压强差能够推动液体越过最高点,向另一端排放。现代日常使用橡胶软管利用虹吸原理吸走鱼缸内粪便,杂物等
卡门涡街的声响效应
卡门涡街交替脱落时会产生振动,并发出声响效应,这种声响是由于卡门涡街周期性脱落时引起的流体中的压强脉动所造成的声波,如日常生活中所听到的风吹电线的风鸣声就是涡街脱落引起的。
桥梁异常抖动什么原因 带你了解桥的秘密
1、桥梁异常抖动是共振现象,从物理学原理来讲,任何物理结构都存在一个固有频率。如果强迫振动的频率接近于物理结构的固有频率,就会引发共振现象。如果振幅足够高,结果会导致结构被破坏掉。
2、大风吹过桥梁也会造成大桥抖动,并有可能引发剧烈的共振现象,这涉及到卡门涡街效应。当强风横向吹过桥面时,会在桥面上下两侧产生两道旋涡,它们的旋转方向相反,互相交错。由此会对桥面产生周期性强迫力,导致桥面出现晃动。这就是卡门涡街效应,由现代宇航科技之父冯·卡门最早阐明原理。如果卡门涡街效应十分强烈,使得桥面振动幅度增大,最终达到桥梁的固有频率。结果就会出现共振现象,桥梁将会发生剧烈的振动.
什么是“卡门涡街”?
卡门涡街又叫做卡门涡流,是一个匈牙利籍美国空气动力学家,冯·卡门提出的物理理论,也是我国钱学森的的博士导师。涡街是指流体中安置的阻流体,在特定条件下,会出现不稳定的边界层分离现象,阻流体下游的两侧,会产生两道非对称地排列的漩涡,其中一侧的漩涡顺时针方向转动,另一侧漩涡则反方向旋转,两排漩涡相互交错排列,想街道旁的街灯一样,所以取名涡街。平常生活中,河水流过障碍物,用的就是卡门涡街。流量计的入口处会设置一个阻流体,用于产生涡街,漩涡会冲击阻流体后面的摆体传感器,用于记录漩涡的频率,流速越高,涡街频率越高。流体流速和频率存在特定的联系,流量计通过内部芯片运算,得出流量信息。
卡门涡街效应的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是卡门涡街现象、卡门涡街效应的信息别忘了在本站进行查找喔。
原文链接:http://b8h1.czfengying.com/html/855e13199013.html